opyright @ 2015 河南大学纳米材料工程研究中心 All Rights reserved 地址:中国 河南 开封
联系电话:037125152066 传真:037125152066 技术支持:河南大学网站工作室
有机功能材料研究室研究成果
Selected Publications:
2024
[8] Xu W., Li B., Qiu S., Tang J., Xu L., Wang, H. Synthesis and photophysical behaviors of thiophene-based double helices bearing naphthyl groups. SCIENTIA SINICA Chimica 2024, 54 (8), 1361-1368.
[7] Yang Y., Cao W., Yu J., Zhang Z., Xu L., Wang H. Synthesis of Donor-Acceptor (D-A) Typed Phenylcyclooctatetrathiophenes and Their Performances on Aggregation Induced Emission and High Pressure Luminescence. Chinese J. Org. Chem. 2024, 44 (8), 2495-2503.
[6] Wang P., Zhao C., Qiu S., Xu W., Li C., Ma Z., Cao W., Xu L., Wang H. All-thiophene dendrimers based on cyclooctatetrathiophene: synthesis and aggregation-induced emission (AIE) features. Org. Chem. Front., 2024, 11(24): 7214-7221.
[5] Dang L., Xu W., Qiu S., Yu Y., Ma Z., Yue L., Su H., Li C., Wang H. Constructon and Circularly Polarized Luminescence of Thiophene-Based Multiple Helicenes. Org. Lett. 2024, 26 (47), 10141-10145.
[4] Liu Y., Ma Z., Su H., Wei R., Shen Z., Wang H. The influence of heteroatoms on the circularly polarized luminescence performance of [7]helicene derivatives: aromatic vs. non-aromatic five-membered rings. Phys. Chem. Chem. Phys., 2024, 26(7): 6099-6106.
[3] Wang M., Yao J., Xu W., Yue L., Ma Z., Zhao R., Li C., Li R., Wang H. Organic field-effect transistors based on two-dimensional molecular crystals of thiophene/selenophene-based triacene asymmetric derivatives as active layer. Synthetic Met., 2024, 301: 117532.
[2] Sun Z., Xu W., Qiu S., Ma Z., Li C., Zhang S., Wang H. Thia[n]helicenes with long persistent phosphorescence. Chem. Sci., 2024, 15(3): 1077-1087.
[1] Yang Q., Wu R., Yang L., Liu W., Meng X., Zhang W., Shen S., Li M., Zhou Y., Song J. Tetrathiophene-based fully non-fused ring electron acceptors via asymmetric side chain engineering. Dyes and Pigments, 2024, 221: 111808.
2023
[8] Shen S., Mi Y., Ouyang Y., Lin Y., Deng J., Zhang W., Zhang J., Ma Z., Zhang C., Song J., Bo Z. Macrocyclic Encapsulation in a Non-fused Tetrathiophene Acceptor for Efficient Organic Solar Cells with High Short-Circuit Current Density. Angew. Chem. Int. Edit., 2023, 62(52): e202316495.
[7] Shen S., Yang L., Mi Y., Zhou Y., Li M., Zhang J., Ye L., Song J. Alkyl Branching Sites on π-Spacers for Dipyran-Based High-Efficiency Organic Solar Cells. ACS Appl. Energy Mater., 2023, 6(2): 1066-1075.
[6] Song J., Bo Z. Asymmetric molecular engineering in recent nonfullerene acceptors for efficient organic solar cells. Chinese Chem. Lett., 2023, 34(10): 108163.
[5] Yang L., Shen S., Chen X., Wei H., Xia D., Zhao C., Zhang N., Hu Y., Li W., Xin H., Song J. Doped/Undoped A1-A2 Typed Copolymers as ETLs for Highly Efficient Organic Solar Cells. Adv. Funct. Mater., 2023, 33(36): 2303603.
[4] Zhou Y., Liu P., Shen S., Li M., Qin R., Tang X., Qin C., Song J., Bo Z., Zhang L. Terthiophene based low-cost fully non-fused electron acceptors for high-efficiency as-cast organic solar cells. J. Mater. Chem. A, 2023, 11(14): 7498-7504.
[3] Dong Y., Sun Z., Xu W., Ma Z., Qiu S., Li C., Wang H. Construction and Phosphorescence Behavior of S/Se-Heteroaromatics/Phenanthrene-Fused Hetero[9]helicenes. Org. Lett., 2023, 25, 6715-6719.
[2] Cai X., Xie J., Wang C., Ma Z., Wang G., Wang H. Aggregation-induced emission of nitrogenous heterocycle-bridged cyclootatetrathiophene dimers. Dyes and Pigments, 2023, 216: 111309.
[1] Ji Z, Zhao C, Zhang C, Wang Z, Ma Z, Xu L, Wang H. Synthesis and AIE properties of benzene fused cyclooctetrathiophenes. J. Photoch. Photobio. A, 2023, 436: 114362.
2022
[8] Zhang C, Liu Y, Ma Z, Wang G, Li C, Yang F, Shi J, Li R, Wang H. Dragon-Boat-Type Heptathienoacenes: Synthesis, Structures, and Their Applications in OFETs. Org. Lett., 2022, 24(48): 8741-8746.
[7] Xu W, Wei J, Tang K, Ma Z, Shi J, Li C, Wang H. Thiophene/selenophene-based windmill-shaped triple [6]helicenes. Org. Chem. Front., 2022, 9(20): 5578-5585.
[6] Wu Z, Xu W, Li C, Ma Z, Wang G, Wang H. Synthesis and crystal structures of unsymmetrical wave-shaped heptathienoacenes. Org. Biomol. Chem., 2022, 20(25): 5145-5151.
[5] Zhou Y, Li M, Yu N, Shen S, Song J, Ma Z, Bo Z. Simple Tricyclic-Based A-π-D-π-A-Type Nonfullerene Acceptors for High-Efficiency Organic Solar Cells. ACS Appl. Mater. Interfaces, 2022, 14(4): 6039-6047.
[4] Wang M, Dang L, Xu W, Ma Z, Shao L, Wang G, Li C. Thiophene/selenophene-based S-shaped double helicenes: regioselective synthesis and structures. Beilstein J. Org. Chem., 2022, 18: 809–817.
[3] Zhao S, Ma Z, Wang H, Shi J. Organic Heterojunction Transistors Based on DEP-DTT Isomers and PTCDI-CH2C3F7. Adv. Mater. Interfaces, 2022, 9(19): 2200259.
[2] Li M, Feng S, Shen S, Huang H, Xue W, Yu N, Zhou Y, Ma W, Song J, Tang Z, Bo Z. High efficiency ternary organic solar cells via morphology regulation with asymmetric nonfused ring electron acceptor. Chem. Eng. J., 2022, 438: 135384.
[1] Li M, Yu M, Yang L, Yu N, Zhou Y, Hu L, Ma Z, Qin C, Qin R, Song J. Using fullerene as the third component to boosting the photovoltaic performances of pyran acceptor. Dyes and Pigments, 2022, 197: 109933.
2021
[9] Ji C, Wang G, Wang H. Progress in Metal-Organic Supramolecular System Based on Subcomponent Self-Assembly. Chin. J. Org. Chem., 2021, 41(6): 2261-2279.
[8] Tian Y, Wang C, Wang G, Xu L, Wang H. Ag-Induced metallogel based on cyclooctatetrathiophene: structural characterization and stimuli-responsive properties. Soft Matter, 2021, 17(2): 341-345.
[7] Li M, Yang L, Zhou Y, Liu Y, Song J, Wang H, Bo Z. Flexible-Rigid Synergetic Strategy for Saddle-Shaped Perylene Diimide Acceptors in As-Cast Polymer Solar Cells. J. Phys. Chem. C, 2021, 125(20): 10841-10849.
[6] Liu Y, Song J, Bo Z. Designing high performance conjugated materials for photovoltaic cells with the aid of intramolecular noncovalent interactions. Chem. Commun., 2021, 57(3): 302-314.
[5] Zhou Y, Li M, Lu H, Jin H, Wang X, Zhang Y, Shen S, Ma Z, Song J, Bo Z. High-Efficiency Organic Solar Cells Based on a Low-Cost Fully Non-Fused Electron Acceptor. Adv. Funct. Mater., 2021, 31(27): 2101742.
[4] Zhou Y, Li M, Shen S, Wang J, Zheng R, Lu H, Liu Y, Ma Z, Song J, Bo Z. Hybrid Nonfused-Ring Electron Acceptors with Fullerene Pendant for High-Efficiency Organic Solar Cells. ACS Appl. Mater. & Interfaces, 2021, 13(1): 1603-1611.
[3] Wang J, Wang G, Li C, Dong Y, Ma Z, Wang H. Synthesis of All Thiophene-Based [7]Helicenes and Trithienothiepines with Isomeric Location of Sulfur Atoms Based on Intramolecular Selectivity of Deprotonation. J. Org. Chem., 2021, 86(6): 4413-4422.
[2] Zhao C, Ma Z, Li C, Xu L, Wang H. Thiophene and naphthalene-based double helix: Synthesis, structures and chirality. Chinese Chem. Lett., 2021, 32(1): 457-460.
[1] Yang Y, Gu Y, Ma Z, Zhang Y, Xu W, Xu L, Wang K, Zou B, Wang H. Aggregation-induced emission and pressure-dependent fluorescence of aryl cyclooctatetrathiophenes. Dyes and Pigments, 2021, 184:108803.
2020
[6] Li M, Zhou Y, Yang L, Shen S, Liu Y, Chen Y, Song J, Bo Z. Regulating molecular orientations of dipyran-based nonfullerene acceptors through side-chain engineering at the π-bridge. J. Mater. Chem. A, 2020, 8(42): 22416-22422.
[5] Zhang C, Ma Z, Wang G, Li C, Wang H. Synthesis and structures of unsymmetrical bull's horn-shaped heptathienoacenes with isomeric location of sulfur atoms. Org. Chem. Front., 2020, 7(23): 3926-3934.
[4] Li M, Liu Y, Zhou Y, Yang L, Shen S, Song J, Bo Z. Photovoltaic Performances of Fused Ring Acceptors with Isomerized Ladder-Type Dipyran Cores. ACS Applied Materials & Interfaces, 2020, 12(4): 4887-4894.
[3] Li M, Wang H, Liu Y, Zhou Y, Lu H, Song J, Bo Z. Perylene diimide acceptor with two planar arms and a twisted core for high efficiency polymer solar cells. Dyes and Pigments, 2020, 175: 108186.
[2] Ahmed Qureshi M B, Li M, Wang H, Song J, Bo Z. Nonfullerene acceptors with an N-annulated perylene core and two perylene diimide units for efficient organic solar cells. Dyes and Pigments, 2020, 173: 107970.
[1] Tian D, Ma Z, Gu L, Zhou C, Li C, Wang Z, Wang H. Isomerically Fused Benzo[i]dithiophenephenazine and Benzo[i]diselenophenephenazine: Synthesis, Crystal Packing, and DensityFunctional Theory Calculations. Crystal Growth & Design, 2020, 20(7): 4479-4490.
2019
[6] Ming S., Liu Y., Feng S., Jiang P., Zhang C., Li M., Song J., Bo Z.. Fused-ring acceptor with a spiro-bridged ladder-type core for organic solar cells. Dyes and Pigments, 2019, 163, 153-158.
[5] Ming S, Zhang C E, Jiang P, Jiang Q, Ma Z, Song J, Bo Z. Impact of the Bonding Sites at the Inner or Outer π-Bridged Positions for Non-Fullerene Acceptors. ACS Applied Materials & Interfaces, 2019, 11(21): 19444-19451.
[4] Liu Y, Li M, Yang J, Xue W, Feng S, Song J, Tang Z, Ma W, Bo Z. High-Efficiency As-Cast Organic Solar Cells Based on Acceptors with Steric Hindrance Induced Planar Terminal Group. Advanced Energy Materials, 2019, 9(32): 1901280.
[3] Li M, Zhou Y, Zhang J, Song J, Bo Z. Tuning the dipole moments of nonfullerene acceptors with an asymmetric terminal strategy for highly efficient organic solar cells. J. Mater. Chem. A, 2019, 7(15): 8889-8896.
[2] Shan Z, Shi J, Xu W, Li C, Wang H. Organic field-effect transistors based on biselenophene derivatives as active layers. Dyes and Pigments, 2019, 171: 107675.
[1] Song J, Bo Z. Planar copolymers for high-efficiency polymer solar cells. Sci. China: Chem, 2019, 62: 9-13.
2018
[9]Li B, Zhang S, Li L, Ma Z, Li C, Xu L, Wang H. All-Thiophene-Based Double Helix: Synthesis, Crystal Structure, Chiroptical Property and Arylation. ACS Omega, 2018, 3,16014-16020.
[8]Xu, W. Wang, M. Ma, Z.Y., Shan, Z., Li, C. L.,Wang H. Selenophene-Based Heteroacenes: Synthesis, Structures, and Physicochemical Behaviors. J. Org. Chem. 2018,83,12154-12163
[7] Tian, Y; Wang, G. X.; Ma, Z. Y.; Xu, L, Wang H. Homochiral Double Helicates based on Cyclooctatetrathiophene: Chiral Self-sorting with the Intramolecular S···N Interaction. Chem. Eur. J. 2018,24,15993-15997.
[6] Li, Y. Guo, Y. Zhou,M. Zhang, J. Yang,L. Zhang, L. Song, J., Bo, Z., Wang H. Facile Synthesis of the O-Functionalized Ladder-Type Dipyran Building Block and Its Application in Polymer Solar Cells. ACS Appl. Mater. Interfaces, 2018, 10, 13931–13940.
[5] Liu X, Sun H, Xu W, Wan S, Shi J, Li C, Wang H. Syntheses and structures of [7]helicene and double helicene based on dithieno[2,3-b:2',3'-d]thiophene. Org. Chem. Front., 2018, 5(8): 1257-1261.
[4] Li L, Zhao S, Li B, Xu L, Li C, Shi J, Wang H. From Saddle-Shaped to Planar Cyclic Oligothienoacenes: Stepped-Cyclization and Their Applications in OFETs. Org. Lett., 2018, 20, 2181-2185.
[3] Zhao C, Cai X, Ma Z, Shi J, Xu L, Wang H. Excimer formation from particially overlapped anthracene dimer based on saddle-shaped cyclooctatetrathiophene as spacer. J. Photoch. Photobio. A, 2018, 355: 318-325.
[2] Yang L, Li M, Song J, Zhou Y, Bo Z, Wang H. Molecular Consideration for Small Molecular Acceptors Based on Ladder-Type Dipyran: Influences of O-Functionalization and π-Bridges. Adv. Funct. Mater., 2018, 28, 1705927.
[1] Zhou Y, Li M, Song J, Liu Y, Zhang J, Yang L, Zhang Z, Bo Z, Wang H. High efficiency small molecular acceptors based on novel O-functionalized ladder-type dipyran building block. Nano Energy, 2018, 45: 10-20.
2017
[6] Guo Y, Li M, Zhou Y, Song J, Bo Z, Wang H. Two-Dimensional Conjugated Polymer Based on sp2-Carbon Bridged Indacenodithiophene for Efficient Polymer Solar Cells. Macromolecules, 2017, 50(20): 7984-7992.
[5] Xu W, Wu L, Fang M, Ma Z, Shan Z, Li C, Wang H. Diseleno[2,3-b:3′,2′-d]selenophene and Diseleno[2,3-b:3′,2′-d] thiophene: Building Blocks for the Construction of [7]Helicenes. J. Org. Chem., 2017, 82(20): 11192-11197.
[4] Li L, Li B, Li C, Ma Z, Xu L, Wang H. Selective deprotonation of tetra[3,4]thienylene in the presence of n-BuLi. Org. Chem. Front., 2017, 4: 1019-1023.
[3] Sun C-J, Zhao X-Q, Wang P-F, Wang H, Han B-H. Thiophene-based conjugated microporous polymers: synthesis, characterization and efficient gas storage. Sci. China Chem., 2017, 60(8): 1067-1074.
[2] Li L, Wang P, Li C, Wang H. Studies on the Efficient Synthesis of Cycloocta[1,2-b: 4,3-b':5,6-b'':8,7-b'''] tetrathiophene and Its Reaction Mechanism. Journal of Henan University (Natural Science), 2017, 47(1): 1-6.
[1] Wang H. Chemical and Photochemical Synthesis of Thiophene-based Helicenes. Imaging Science and Photochemistry, 2017, 35(5): 603-613.
2016
[10] Zhang S, Liu X, Li C, Li L, Song J, Shi J, Morton M, Rajca S, Rajca A, Wang H. Thiophene-Based Double Helices: Syntheses, X-ray Structures, and Chiroptical Properties. J. Am. Chem. Soc., 2016, 138(31): 10002-10010. (Highlighted by SYNFACTS 12(10), 1036, 2016.)
[9] Zhou Y, Li M, Guo Y, Lu H, Song J, Bo Z, Wang H. Dibenzopyran-Based Wide Band Gap Conjugated Copolymers: Structural Design and Application for Polymer Solar Cells. ACS Appl. Mater. & Interfaces, 2016, 8(45): 31348-31358.
[8] Li M, Liu L, Zhao C, Zhou Y, Guo Y, Song J, Wang H. Side chain engineering of dithienosilole-based polymers for application in polymer solar cells. Dyes and Pigments, 2016, 134: 480-486.
[7] Dai H, Yi W, Deng K, Wang H, Zeng Q. Formation of Coronene Clusters in Concentration and Temperature Controlled Two-Dimensional Porous Network. ACS Appl. Mater. & Interfaces, 2016, 8(32): 21095-21100.
[6] Liu Q, Gao X, Zhong H, Song J, Wang H. Planar Heptathienoacenes Based on Unsymmetric Dithieno[3,2-b:3′,4′-d]thiophene: Synthesis and Photophysical Properties. J. Org. Chem., 2016, 81(18): 8612-8616. (Highlighted by SYNFACTS 12(11), 1149, 2016.)
[5] Sun C-J, Wang P-F, Wang H, Han B-H. All-thiophene-based conjugated porous organic polymers, Polym. Chem., 2016, 7(31): 5031-5038.
[4] Zhao X, Zhang L, Song J, Kan Y, Wang H. Naphthotetrathiophene-Based Helicene-Like Molecules: Synthesis and Photophysical Properties. J. Org. Chem., 2016, 81(11): 4856-4860.
[3] Liu L, Zhang L, Li M, Guo Y, Song J, Wang H. Random dithienosilole-based terpolymers: Synthesis and application in polymer solar cells. Dyes and Pigments, 2016, 130: 63-69.
[2] Liu L, Song J, Lu H, Wang H, Bo Z. Novel dithienosilole-based conjugated copolymers and their application in bulk heterojunction solar cells. Polym. Chem., 2016, 7: 319-329.
[1] Li L, Zhao C, Wang H. Recent Progress in Synthesis and Application of Thiophene Oligomers Based on Bithiophene Dicarbanions. Chemical Record (Review), 2016, 16(2): 797-809.
2015
[6] Song J, Guo Y, Liu L, Wang H. Efficient synthesis of dibenzopyran building block and its application in organic photovoltaics. Dyes and Pigments, 2015, 122: 184-191.
[5] Li C, Wu L, Xu W, Song J, Shi J, Yu P, Kan Y, Wang H. Silicon Spiro Double Helicene-like Compounds Based on Dithieno[2,3-b:3′,2′-d]thiophene: Syntheses and Crystal Structures. J. Org. Chem., 2015, 80(21): 11156-11161. (Highlighted by SYNFACTS 12(2), 0144, 2016.)
[4] Yi W, Zhao S, Sun H, Kan Y, Shi J, Wan S, Li C, Wang H. Isomers of organic semiconductors based on dithienothiophenes: the effect of sulphur atoms positions on the intermolecular interactions and field-effect performances, J. Mater. Chem. C, 2015, 3(41): 10856-10861.
[3] Xu L, Wang P-F, Zhang J-J, Wu W, Shi J-W, Yuan J-F, Han H, Wang H. Synthesis and spectroscopic properties of propeller type 2,4,6-tri(anthracen-9-yl)-1,3,5-triazine, RSC-Advances, 2015, 5(64): 51745-51749.
[2] Song J, Wu T, Zhao X, Kan Y, Wang H. Synthesis and molecular properties of butterfly-shaped tetrathiophene derivatives. Tetrahedron, 2015, 71(12): 1838-1843.
[1] Zhao C, Xu L, Wang Y, Li C, Wang H. Recent Progress in the Synthesis and Application of Saddle-shaped Cyclooctatetrathiophenes and Their Derivatives. Chinese Journal of Chemistry, 2015, 33(1): 71-78.
2014
[4] Shi J, Zhao W, Xu L, Kan Y, Li C, Song J, Wang H. Small Molecules of Cyclopentadithiophene Derivatives: Effect of Sulfur Atom Position and Substituted Groups on Their UV–Abs Properties. J. Phys. Chem. C, 2014, 118(15): 7844-7855.
[3] Wang Y, Song J, Xu L, Kan Y, Shi J, Wang H. Synthesis and Characterization of Cyclooctatetrathiophenes with Different Connection Sequences. J. Org. Chem., 2014, 79(5): 2255-2262.
[2] Li C, Zhang Y, Zhang S, Shi J, Kan Y, Wang H. From N,N-diphenyl-N-naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl-amine to propeller-shaped N,N,N-tri(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)-amine: syntheses and structures. Tetrahedron, 2014, 70(25): 3909-3914.
[1] Wang Y, Gao D, Shi J, Kan Y, Song J, Li C, Wang H. Derivation of saddle shaped cyclooctatetrathiophene: increasing conjugation and fabricating pentamer. Tetrahedron, 2014, 70(3): 631-636.
2013
[8] Liu X, Yu P, Xu L, Yang J, Shi J, Wang Z, Cheng Y, Wang H. Synthesis for the Mesomer and Racemate of Thiophene-Based Double Helicene under Irradiation. J. Org. Chem., 2013, 78(12): 6316-6321.
[7] Sun H, Shi J, Zhang Z, Zhang S, Liang Z, Wan S, Cheng Y, Wang H. Synthesis and Structure of Bull’s Horn-Shaped Oligothienoacene with Seven Fused Thiophene Rings. J. Org. Chem., 2013, 78(12): 6271-6275.
[6] Han H, Zhao W, Song J, Li C, Wang H. Selectivity of Br/Li Exchange and Deprotonation of 4,4′-Dibromo-3,3′-bithiophene for Synthesis of Symmetrical and Unsymmetrical Dithienoheteroaromatic Rings. J. Org. Chem., 2013, 78(6): 2726-2730.
[5] Wu T, Shi J, Li C, Song J, Xu L, Wang H. Synthesis of Dendrimers Based on Tetrakis(thiophene-2-yl)ethene as New Dendron. Org. Lett., 2013, 15(2): 354-357.
[4] Shi J, Xu L, Li Y, Jia M, Kan Y, Wang H. Intermolecular interactions in organic semiconductors based on annelated β-oligothiophenes and their effect on the performance of organic field-effect transistors. Organic Electronics, 2013, 14(3): 934-941.
[3] Wang Z, Putta A, Mottishaw J D, Wei Q, Wang H, Sun H. Molecular Origin of Isomerization Effects on Solid State Structures and Optoelectronic Properties: A Comparative Case Study of Isomerically Pure Dicyanomethylene Substituted Fused Dithiophenes. J. Phys. Chem. C, 2013, 117(33): 16759-16768.
[2] Zhong H, Shi J, Kang J, Wang S, Liu X, Wang H. Ring-opening reaction of 2,5-dioctyldithieno[2,3- <i>b</i> :3',2'- <i>d</i> ]thiophene in the presence of aryllithium reagents. Beilstein J. Org. Chem., 2013, 9: 767-774.
[1]Wang Z, Shi J, Tian X, Xu L, Li C, Wang H. Syntheses and Crystal Structures of 2,7-Di(trimethylsilyl)thieno[3,2-e]benzothiophene, 1,2,5,6(5)-Tetra(trimethylsilyl)-1,2,5,6(2,3)-tetrathiophenacyclooctaphan-3(z),7(z)-diene, and 2,7-Di(trimethylsilyl)thieno[3,2-e]benzothiophene-4-ol. J. Heterocycl. Chem., 2013, 50(5): 1021-1024.
2012
[3] Zhao J, Qiu D, Shi J, Wang H. Synthesis of Dithieno[2,3-b:4′,3′-d]siloles and Their Selective Bromination. J. Org. Chem., 2012, 77(6): 2929-2934. (Highlighted by SYNFACTS 8(6), 0621, 2012 and ChemInform 43(28), S0060, 2012)
[2] Yang J, Li C, Wang Z, Wang H. Syntheses of Fused Thiophenes:[7]Helicene and Double Helicene Bearing Chiral Alkyl Chains. Lett. Org. Chem., 2012, 9(10): 706-710.
[1] Li Z, Li C, Zhao C, Wu W, Wang H. Spectroscopic study on the intermolecular double proton transfer in 4-(naphthalen-1-yl)-6-octyl-1,3,5-triazin-2-amine with acid. J. Lumin., 2012, 132(10): 2794-2798.
2011
[5] Shi J, Li Y, Jia M, Xu L, Wang H. Organic semiconductors based on annelated β-oligothiophenes and its application for organic field-effect transistors, J. Mater. Chem., 2011, 21(44): 17612-17614.
[4] Zhao C, Xu L, Shi J, Li C, Wang Z, Wang H. The Ring-Opening Reaction of 7,7’-Dimethyl-2, 5-bis(trimethylsilyl)-dithieno[2,3-b:3’,2’-d]silole in the Presence of NXS (X = Cl, Br, I). Int. J. Org. Chem., 2011, 01(04): 162-166.
[3] Zhao C, Shi J, Li C, Wang H. Efficient Synthesis of Substituted Dithieno[2,3-b:3',2'-d]siloles and A 10-Membered Silicon-Bridged Thiophene-Based Cyclophane. Lett. Org. Chem., 2011, 8(10): 728-731.
[2] Shi J, Wang H, Wang H, Tian H, Geng Y, Yan D. Improve on/off ratio of organic heterojunction transistors by adopting single-sandwich configuration. Solid-State Electronics, 2011, 61(1): 65-68.
[1] Cai Y-Q, Wu W, Wang H, Miyake J, Qian D-J. Monolayers and Langmuir–Blodgett films of luminescent 1,3,5-triazine derivatives containing naphthalene or anthracene chromophores. Surface Science, 2011, 605(3–4): 321-327.
2010 and before
[18] Wang Z, Shi J, Wang J, Li C, Tian X, Cheng Y, Wang H. Syntheses and Crystal Structures of Benzohexathia[7]helicene and Naphthalene Cored Double Helicene. Org. Lett., 2010, 12(3): 456-459. (Highlighted by SYNFACTS (4), 0411, 2010)
[17] Wang Z, Zhao C, Zhao D, Li C, Zhang J, Wang H. The preparation of substituted bithiophenyl aldehydes via the ring opening of dithieno[2,3-b:3′,2′-d]thiophene in the presence of n-BuLi. Tetrahedron, 2010, 66(12): 2168-2174.
[16] Wang Z, Shi J, Li C, Zhao D, Wang Z, Wang H. The Synthesis of Octyl-Substituted Hexathia[7]heterohelicene Based on dithieno[2,3-b:3',2'-d]thiophene via Irradiation. Lett. Org. Chem., 2010, 7(1): 85-89.
[15] Wang D, Jiang X, Zhao C, Wang Z, Wang H, Du Z. Study on the micro-region structure and properties of two dithienothiophene-dicarboxylic acids. Chinese Sci. Bull., 2010, 55(6): 478-483.
[14] Zhu Y, Liu H, Li F, Ruan Q, Wang H, Fujiwara M, Wang L, Lu G Q. Dipolar Molecules as Impellers Achieving Electric-Field-Stimulated Release. J. Am. Chem. Soc., 2010, 132(5): 1450-1451.
[13] Li C, Shi J, Xu L, Wang Y, Cheng Y, Wang H. Syntheses and Crystal Structures of Fused Thiophenes: [7]Helicene and Double Helicene, a D2-Symmetric Dimer of 3,3′-Bis(dithieno[2,3-b:3′,2′-d]thiophene). J. Org. Chem., 2009, 74(1): 408-411.
[12] Wu W, Xu L, Shi J, Qin X, Wang H. “One-Pot” Reaction Involving Ring Formation of Silole, Thiophene Ring-Opening Alkynylation, and S−S Coupling. Organometallics, 2009, 28(6): 1961-1964.
[11] Wang H, Wang Z, Zhu S, Shi J. The efficient synthesis of dibenzo[d,d’]benzo[1,2-b:4,3-b’]dithiophene and cyclopenta[1,2-b:4,3-b’]bis(benzo[d]thiophen)-6-one. Beilstein J. Org. Chem., 2009, 5.
[10] Xu L, Wang Z, Xu K, Shi J, Wang H. The Efficient Synthesis of Dithieno[3,4-b:3',4'-d]thiophene. Lett. Org. Chem., 2009, 6(6): 474-477.
[9] Xiao S, Pink M, Wang H, Rajca S, Rajca A. Chiral tetrathienylene: synthesis and X-ray structure. J. Sulfur Chem., 2008, 29(3-4): 425-432.
[8] Wang Y, Wang Z, Zhao D, Wang Z, Cheng Y, Wang H. Efficient Synthesis of Trimethylsilyl-Substituted Dithieno[2,3-b:3′,2′-d]thiophene, Tetra[2,3-thienylene] and Hexa[2,3-thienylene] from Substituted [3,3′]Bithiophenyl. Synlett, 2007: 2390-2394.
[7] Rajca A, Miyasaka M, Pink M, Wang H, Rajca S. Helically Annelated and Cross-Conjugated Oligothiophenes: Asymmetric Synthesis, Resolution, and Characterization of a Carbon−Sulfur [7]Helicene. J. Am. Chem. Soc., 2004, 126(46): 15211-15222.
[6] Rajca A, Pink M, Rojsajjakul T, Lu K, Wang H, Rajca S. X-ray Crystallography and Magnetic Studies of a Stable Macrocyclic Tetranitroxide. Intramolecular Dimer of Nitroxides in a Constrained Geometry of the Upper Rim of Calix[4]arene. J. Am. Chem. Soc., 2003, 125(28): 8534-8538.
[5] Freedman T B, Cao X, Rajca A, Wang H, Nafie L A. Determination of Absolute Configuration in Molecules with Chiral Axes by Vibrational Circular Dichroism: A C2-Symmetric Annelated Heptathiophene and a D2-Symmetric Dimer of 1,1‘-Binaphthyl. J.Phys. Chem. A, 2003, 107(39): 7692-7696.
[4] Shenhar R, Wang H, Hoffman R E, Frish L, Avram L, Willner I, Rajca A, Rabinovitz M. Self-Assembled, Helically Stacked Anionic Aggregates of 2,5,8,11-Tetra-tert-butylcycloocta[1,2,3,4-def;5,6,7,8-d‘e‘f‘]bisbiphenylene, Stabilized by Electrostatic Interactions. J. Am. Chem. Soc., 2002, 124(17): 4685-4692.
[3] Rajca A, Wang H, Bolshov P, Rajca S. A Greek cross dodecaphenylene: sparteine-mediated asymmetric synthesis of chiral D2-symmetric π-conjugated tetra-o-phenylenes. Tetrahedron, 2001, 57(17): 3725-3735.
[2] Rajca A, Wang H, Pawitranon V, Brett T J, Stezowski J J. Synthesis and structure of tetrathiophene with a chiral 1,1′-binaphthyl kink, Chem. Commun., 2001, (12): 1060-1061.
[1] Rajca A, Wang H, Pink M, Rajca S. Annelated Heptathiophene: A Fragment of a Carbon–Sulfur Helix. Angew. Chem. Int. Ed., 2000, 112(24): 4655-4657.
Chinese Patents:
[21] 发明名称:“一种基于三蝶烯的手性噻吩螺烯及其制备方法”,王光霞,苗杏杏,汤昆,黄礼翠,王华。专利号:ZL202210902245.8,授权公告日期:2023年6月6日。
[20] 发明名称:“一种并三噻吩衍生物及其制备方法和应用”,李春丽,邵柳柳,徐婉,孔瑞云,王华。专利号:ZL202210889879.4,授权公告日期:2023年06月22日
[19] 发明名称:“一种马鞍型苝酰亚胺四聚体及其制备方法与应用”,宋金生,杨丽思,王华。专利号: ZL201811564692.7, 授权公告日期:2021年03月26日
[18] 发明名称:“非对称直线型七元稠合噻吩同分异构及其制备方法”,王华,张超,马志英,王光霞,李春丽,史建武. 专利号: ZL201911267784.3, 授权公告日期:2021年11月05日
[17] 发明名称:“一种非对称噻吩[7]螺烯同分异构体及其制备方法和应用”,王华,王金健,王光霞,李春丽,史建武. 专利号: ZL201911059357.6, 授权公告日期: 2021年06月04日
[16] 发明名称:"硒吩衍生物及其制备方法和在作为有机半导体材料方面的应用",李春丽,王华,单震,史建武,徐婉,王萌杰. 专利申请号: ZL201910169955.2, 授权公告日期: 2021年04月13日
[15] 发明名称:“一种非对称七元稠合噻吩及其制备方法和应用”,王华,李春丽, 张超,史建武,宋金生,王光霞。 专利号:ZL201810854084.3,授权公告日期:2020年11月13日
[14] 发明名称:“并五噻吩同分异构体及其制备方法和应用”,史建武,王华,周文娟,赵帅,李春丽。专利号:ZL201810662121.0,授权公告日期:2020年06月25日
[13] 发明名称:“一种并五噻吩的制备方法、并五噻吩及其应用”,史建武,王华,周文娟,赵帅,李春丽。专利号:ZL201810663929.0,授权公告日期:2020年06月02日
[12] 发明名称:“二硒吩并[2,3-b:3’,2’-d]噻吩及其制备方法”, 李春丽、王华、吴龙龙、徐婉、方茂鸿、单震. 专利号: ZL201710619837.8, 授权公告日期: 2020年03月24日
[11] 发明名称:“一种二噻吩并[3,2-b:2’,3’-d]硒吩的制备方法”,李春丽、王华、徐婉、方茂鸿、单震. 专利号: ZL201810335532.9, 授权公告日期: 2020年02月28日
[10] 发明名称:“二硒吩并[2,3-b:3’,2’-d]硒吩及其制备方法”,李春丽、王华、吴龙龙、徐婉、方茂鸿. 专利号: ZL201710620446.8, 授权公告日期: 2019年10月25日
[9] 发明名称: “一种非对称二噻吩并噻咯衍生物的合成方法”,史建武、王华、赵金灿、李春丽.专利号: ZL201210003661.0, 授权公告日期: 2016.03.30
[8] 发明名称: “非对称二噻吩并芳杂环化合物的合成方法”,王华、韩辉、宋金生、李春丽、史建武、赵文玲. 专利号: ZL201310043495.1, 授权公告日期: 2016.02.17
[7] 发明名称: “通过二噻吩并噻咯卤代开环反应制备二甲硅醇基卤代联噻吩的方法”,徐莉、王华、李春丽、赵彩云.专利号: ZL201110154695.5, 授权公告日期: 2016.01.13
[6] 发明名称: “二噻吩并[2,3-b:2',3'-d]噻吩的制备方法”,王华、孙会靓、刘新明、李春丽、万世胜. 专利号: ZL 201310151508.7, 授权公告日期: 2015.07.15
[5] 发明名称: “一种对称的含二硫键化合物的制备方法”, 王华、田新勇、王治华、李春丽、吴伟、徐莉、史建武. 专利号: ZL 200910064127.9, 授权公告日期: 2012.08.15
[4] 发明名称: “一种均三嗪衍生物及该衍生物的制备方法及该衍生物在对胸腺嘧啶识别中的应用”, 发明人: 王华、李宗耀、赵春梅、李春丽、吴伟. 专利号: ZL 200910064841.8, 授权公告日期: 2012.05.30
[3] 发明名称: “二噻吩并[3,4-b:3',4',-d]噻吩的制备方法”, 王华、王振、徐莉、李宗耀、徐坤、史建武、王治华、李春丽. 专利号: ZL 200910064380.4, 授权公告日期: 2011.06.15
[2] 发明名称: “2-烷基蒽衍生物的制备方法”, 王华、赵春梅、徐莉. 专利号: ZL 200710054810.5, 授权公告日期: 2011.06.08
[1] 发明名称: “一种噻吩大环化合物及其衍生物的制备方法”, 王华、王阳光、王志华、徐莉、王永. 专利号: ZL 200710054833.6, 授权公告日期: 2010.12.29